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An efficient synthesis of 1,6- and
1,7-dibromo-3-aminoisoquinolines: versatile templates

for the preparation of functionalized isoquinolines
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Abstract—An efficient synthetic route to 1,6- and 1,7-dibromo-3-aminoisoquinoline was devised. These intermediates served as ideal
templates for the preparation of 3-aminoisoquinoline analogues functionalized at C(6) or C(7).
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. 1,6- and 1,7-Dibromo-3-aminoisoquinoline templates.
Isoquinolines are widely known elements in natural
products as well as in agents with potential therapeutic
utility.1 In the context of a medicinal chemistry pro-
gram, we were interested in preparing a series of 1-
oxo-3-amino- and 1,3-diaminoisoquinoline derivatives.
For this, we required efficient access to large quantities
of isoquinolines that could serve as scaffolds amenable
to derivatization at multiple sites, particularly on the
benzene ring. Since electrophilic substitution of isoquin-
olines at positions C(5)–C(8) has proven difficult,2 rela-
tively few 1-oxo-3-amino-, and 1,3-diaminoisoquinoline
derivatives have been reported bearing carbon-based
substituents at these positions.3 Therefore, we focused
on the construction of compounds carrying a single
halide function on the benzene ring, anticipating that
transition-metal catalyzed reactions would render easy
access to these compounds. In particular, dibromoiso-
quinolines 1 and 2 (Fig. 1) were thought to be ideal
intermediates since these would allow diversification at
three separate sites through semi-orthogonal transfor-
mations: nucleophilic aromatic substitution (SNAr) at
C(1), electrophilic functionalization of the 3-amino
group and transition-metal catalyzed reactions at either
C(6) or C(7).

Substituted 1-bromo-3-aminoisoquinolines have been
prepared from the corresponding dinitrile by treatment
with HBr in acidic (AcOH) or nonpolar (Et2O or benz-
ene) solvents.4 Therefore, our first objective was to
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develop a synthetic route to access bromo-substituted
dinitriles 8 and 9 in multigram quantities (Scheme 1).
We first attempted to apply a known route for the
synthesis of similarly substituted compounds.5 Unfortu-
nately, it proved somewhat difficult to produce large
quantities of these particular bromo-substituted di-
nitriles following this method. Benzylic bromination of
4-bromo-2-methylbenzonitrile (3) gave a mixture of
bromide 4 and dibrominated material (LC/MS and
TLC analysis). Because the dibromide side product
was difficult to remove by recrystallization, we were
forced to perform a tedious column chromatography
for purification (48% isolated yield).

As this approach seemed impractical for our purposes,
we next focused on installation of the benzylic nitrile
through an SNAr approach. Treatment of 4-bromo-2-
fluorobenzonitrile 5 with the sodium anion of methyl
cyanoacetate at 90 �C proceeded smoothly to give ester
7 in 74% yield.6 Optimization of conditions that
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Scheme 1. Reagents and conditions: (i) N-bromosuccinimide, benzoyl peroxide, CCl4, 48%; (ii) methyl cyanoacetate, NaH, DMSO, 90 �C, 74% for 7;
(iii) 2 equiv H2O, DMSO, 115 �C, 93% for 8; (iv) methyl cyanoacetate, NaH, DMSO, 90 �C; then H2O, reflux (91% for 8, 81% for 9); (v) HBr (g),
dichloroacetic acid, 0 �C to room temperature (59% for 1, 73% for 2).

Table 1. Isoquinoline analogues prepared via dibromo- intermediates
1 and 2

N

NHR2R3
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promoted smooth decarboxylation of 7 to give dinitrile
8 proved elusive; for example, heating the ester in AcOH
to 120 �C resulted in ester hydrolysis exclusively.7 Basic
conditions (NaOH, KOH, LiOH)8 initiated nitrile
hydrolysis competitively with decarboxylation. In
addition, nucleophilic decarboxylation under Krapcho
conditions (NaCN, LiCl, or NaCl in wet DMSO)9 gave
multiple products. Finally, it was found that simply
heating the ester in wet DMSO (2 equiv H2O) at
115 �C for 1 h in the absence of additional salt yielded
decarboxylation to dinitrile 8 in 93% yield.10

Next, we attempted to combine the two steps into a one-
pot procedure. Indeed, we found that upon completion
of the SNAr addition (followed by LC/MS), adding
water as co-solvent and heating to reflux provided clean
decarboxylation, enabling the isolation of 8 in 91% yield
directly from 5.11 Analogous treatment of benzonitrile 6
gave 9 in slightly lower yield (81% yield for the two
chemical steps).

With an efficient synthesis of the dinitriles accomplished,
our attention turned to isoquinoline formation. Treat-
ment of dinitrile 8 with 30% HBr in AcOH as described
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Scheme 2. Reagents and conditions: (i) piperidine, 1,4-dioxane,
170 �C, microwave irradiation, 86–90%; (ii) phenethyl alcohol, NaH,
DMF, 42%; (iii) acetic anhydride, NEt3, 89–94%; (iv) methanesulfonyl
chloride, pyridine/CH2Cl2 (1:1), 81%; (v) cat. Pd(PPh3)4, cat. CuI,
TMS–acetylene, NEt3, 80 �C, 94% for both reactions; (vi) cat.
Pd2(dba)3, cat. P(t-Bu)3, KF, boronic acid, 65 �C, 1,4-dioxane, 70–
87%; (vii) cat. Pd2(dba)3, cat. P(t-Bu)3, N,N-dicyclohexylmethylamine,
methyl acrylate, 1,4-dioxane, 80 �C, 87%.
by Johnson and Nasutavicus4 for similar intermediates
gave isoquinoline 1. However, we found that the use
of HBr in acetic acid produced inconsistent results.
Most notably, various amounts of a 3-acetamide
byproduct were observed.12 Alternatively, addition of
HBr (g) to a solution of 8 in benzene or Et2O4 was found
to be impractical.13

To solve this problem, we screened a variety of acidic
solvents, which identified HBr (g) in dichloroacetic acid
as a suitable condition to produce 1,6-dibromo-3-
aminoisoquinoline free of acetylated byproduct.14 These
reaction conditions allowed the isolation of 1 (59%) and
2 (73%) on 10–20 g scale.15 Access to such quantities of
dibromoisoquinoline intermediates allowed efficient
synthesis of multifunctional isoquinoline derivatives
(Scheme 2, Table 1).16
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As expected, the C(1) bromide could be selectively dis-
placed via SNAr displacement by an amine (microwave
irradiation, entries 1–4)17 or an alkoxide anion (ambient
temperature, entries 5 and 6).18 Next, the 3-amino group
was converted to an acetamide (Ac, entries 1–3, 5 and 6)
or a methyl sulfonamide (Ms, entry 4).5a,b Finally, the
C(6) and C(7) bromides participated in Sonogashira
(entries 2 and 5),19 Heck (entry 4),20 and Suzuki
couplings (entries 1, 3 and 6)21 to give good yields of
substituted isoquinolines.

In conclusion, an efficient synthetic route for the prepa-
ration of 1,6- and 1,7-dibromo-3-aminoisoquinolines in
multigram quantity is presented. As demonstrated in
Scheme 2 and Table 1, these compounds serve as versa-
tile intermediates for the synthesis of multisubstituted 1-
oxo-3-amino- and 1,3-diaminoisoquinoline derivatives
with various substituents at C(6) and C(7). This general
strategy should be applicable for the preparation of
other multisubstituted 3-aminosoquinolines.
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